Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Methyl phenyl terephthalate

Xian-Shu Fu,^a Fa Cheng^{b*} and Yong-Mei Xie^c

^aCollege of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China, ^bDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China, and ^cDepartment of Chemical Engineering, Hangzhou Vocational Technology Institute, Hangzhou 310018, People's Republic of China

Correspondence e-mail: fuxianshu2003@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 294 K Mean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.043 wR factor = 0.117 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_{15}H_{12}O_4$, was synthesized in an anhydrous medium. The aromatic rings make a dihedral angle of 37.43 (5)°. Weak intermolecular $C-H\cdots O$ hydrogen bonds involving one of the carbonyl O atoms stabilize the crystal packing.

Received 21 December 2005 Accepted 16 January 2006

Comment

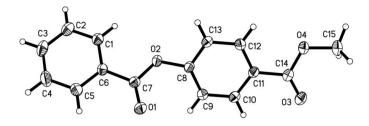
Organic electroluminescence – the emission of light by organic molecules exposed to an electric field – has been extensively investigated in academic and industrial laboratories (Cui & Kim, 2004). The title compound, (I) (Fig. 1), prepared by our group, belongs to the family of organic electroluminescent materials. We report here its X-ray crystal structure.

The bond lengths and angles in (I) (Table 1) show normal values. The two aromatic rings make a dihedral angle of $37.43 (5)^{\circ}$. Weak intermolecular C-H···O hydrogen bonds (Table 2) stabilize the crystal packing (Fig. 2).

Experimental

The title compound was prepared according to a known procedure (Li *et al.*, 2000), which resulted in a colourless powder (m.p. 405–406 K). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution.

Crystal data


 $D_r = 1.384 \text{ Mg m}^{-3}$ $C_{15}H_{12}O_4$ $M_r = 256.25$ Mo $K\alpha$ radiation Monoclinic, $P2_1/c$ Cell parameters from 2124 a = 6.1654 (13) Åreflections b = 29.374 (6) Å $\theta = 2.8-25.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ c = 7.2827 (16) Å $\beta = 111.188 (4)^{\circ}$ T = 294 (2) K $V = 1229.8 (5) \text{ Å}^3$ Block, colourless Z = 4 $0.30 \times 0.28 \times 0.20 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer 2526 independent reflections 1623 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.047$ Absorption correction: multi-scan $R_{\rm int} = 0.047$ $R_{\rm int} = 0.047$ $R_{\rm int} = 0.047$ $R_{\rm int} = 0.985$; Sheldrick, 2002) $R_{\rm int} = 0.967$, $R_{\rm int} = 0.967$, $R_{\rm int} = 0.980$ $R_{\rm int} = 0.967$, $R_{\rm int} = 0.980$ $R_{\rm int} = 0.967$, $R_{\rm int} = 0.980$ $R_{\rm int} = 0.967$, $R_{\rm int} = 0.980$ $R_{\rm int} = 0.967$, $R_{\rm int} = 0.967$, $R_{\rm int} = 0.980$ $R_{\rm int} = 0.967$, $R_{\rm int} = 0.980$ $R_{\rm int} = 0.967$, $R_{\rm int} = 0.980$ $R_{\rm int} = 0.967$, $R_{\rm int} = 0.980$ $R_{\rm int} = 0.967$, $R_{\rm i$

doi:10.1107/S1600536806001760

© 2006 International Union of Crystallography All rights reserved

Figure 1 View of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 35% probability level.

Refinement

 $\begin{array}{lll} \mbox{Refinement on } F^2 & w = 1/[\sigma^2(F_{\rm o}^2) + (0.0459P)^2 \\ R[F^2 > 2\sigma(F^2)] = 0.043 & + 0.2662P] \\ wR(F^2) = 0.117 & where <math>P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ S = 1.01 & (\Delta/\sigma)_{\rm max} = 0.001 \\ 2526 & {\rm reflections} & \Delta\rho_{\rm min} = -0.16 & {\rm e} ~{\rm A}^{-3} \\ 174 & {\rm parameters} & \Delta\rho_{\rm min} = -0.19 & {\rm e} ~{\rm A}^{-3} \\ \mbox{H-atom parameters constrained} & Extinction coerficient: 0.018 (2) \\ \end{array}$

Table 1 Selected geometric parameters (Å, °).

O1-C7 O2-C7	1.194 (2) 1.352 (2)	O2-C8 C6-C7	1.401 (2) 1.478 (2)
02 0.	1.552 (2)	20 2.	1.170 (2)
C5-C6-C7	118.13 (16)	C9-C8-O2	123.42 (16)
O1-C7-C6	125.13 (16)		
C8-O2-C7-C6	177.84 (15)	C5-C6-C7-O2	174.25 (15)
C5-C6-C7-O1	-6.9(3)	O2-C8-C9-C10	173.84 (16)

Table 2 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
$ \begin{array}{c} C13-H13\cdots O1^{i} \\ C15-H15A\cdots O1^{ii} \end{array} $	0.93	2.46	3.362 (2)	164
	0.96	2.57	3.443 (2)	152

Symmetry codes: (i) x - 1, y, z; (ii) -x + 1, -y + 1, -z + 2.

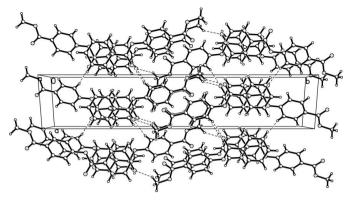


Figure 2 A packing diagram for (I). The dashed lines denote intermolecular $C-H\cdots O$ hydrogen bonds.

All H atoms were positioned geometrically and refined as riding (C—H = 0.93 or 0.96 Å). For CH groups, $U_{\rm iso}({\rm H})$ values were set equal to $1.2U_{\rm eq}({\rm C})$ and for the methyl groups they were set equal to $1.5U_{\rm eq}({\rm C})$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Scientific Research Foundation for Returned Overseas Chinese Scholars and the Ministry of Education.

References

Bruker (1997). SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc, Madison, Wiscosin, USA.

Cui, J. Z. & Kim, S. H. (2004). Chin. Sci. Bull. 49, 797-802.

Li, W. R., Yo, Y. C. & Lin, Y. S. (2000). Tetrahedron, 56, 8867–8875.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.